欢迎来到中国科学院过程工程研究所无机功能材料课题组!

您是第 325750103 位访客!

中文
|
EN
首页 新闻 研究方向 成果 成员 荣誉 产业化 招聘 链接资源
    新闻
 
  成果报道
当前位置: 网站首页 > 新闻 > 成果报道
2022年01月26日:中国科学院官网以“Scientists Fabricate Smart Heat Isolator”为题报道了课题组近期在光热水净化领域的成果。


Researchers from Zhengzhou University and the Institute of Process Engineering (IPE) of the Chinese Academy of Sciences have developed a smart material that combines hollow multishelled structure (HoMS) TiO2 and a heat-sensitive polymer in order to automatically control heat transmission.


This study was published in Green Energy & Environment on Jan. 20.


Heat is the most widely used driving force for chemical reactions, but the combustion of fossil fuels leads to huge CO2 emissions. Effective thermal energy management is a key imperative for green production.


Developing an intelligent material that can automatically control heat transfer is a way to limit such emissions. The goal of this intelligent material is to perform thermal insulation at relatively low temperatures while dissipating heat when the reaction system overheats.


"HoMS is assembled from multiple shells and independent closed cavities between shells. It has unique properties of energy transfer and is quite a special structure among all hollow materials," said Prof. WANG Dan from IPE.


The rapid development of HoMS started with the development of sequential templating approach in 2009, and years of study has found it possesses the advantage in effective surface exposure and optimized mass transport.


A hollow structure with multishells can provide more interfaces and thus further inhibit heat convection and transmission, thus making it more favorable for heat isolation.

The HoMS–polymer composites possess an intelligent thermal insulation behavior and exhibit excellent thermal insulation properties below the given temperature. If the system overheats, the thermal conductivity automatically increases to release the stored energy.


The study shows that the thermally responsive polymer is a promising model for building thermal fields and reveals for the first time the mode of heat transfer through HoMS. This composite exhibits an unusual two-stage endothermic behavior whereby the direction of heat flow in the material matrix changes. The energy is accumulated in HoMS, which operates as a heat reservoir to regulate the thermal flow.


This work provides a new avenue for designing smart reactors for the green chemical industry, thus creating more opportunities for heat-related applications and increasing the potential for efficient energy use.



报道直达链接https://www.eurekalert.org/news-releases/941315


成果直达链接https://www.sciencedirect.com/science/article/pii/S2468025722000048?via%3Dihub


2022年01月25日:美国EurekAlert 以“Scientists fabricate smart heat isolator”为题报道了课题组近期在光热水净化领域的成果


Researchers from Zhengzhou University and the Institute of Process Engineering (IPE) of the Chinese Academy of Sciences have developed a smart material that combines hollow multishelled structure (HoMS) TiO2 and a heat-sensitive polymer in order to automatically control heat transmission.


This study was published in Green Energy & Environment on Jan. 20.


Heat is the most widely used driving force for chemical reactions, but the combustion of fossil fuels leads to huge CO2 emissions. Effective thermal energy management is a key imperative for green production.


Developing an intelligent material that can automatically control heat transfer is a way to limit such emissions. The goal of this intelligent material is to perform thermal insulation at relatively low temperatures while dissipating heat when the reaction system overheats.


"HoMS is assembled from multiple shells and independent closed cavities between shells. It has unique properties of energy transfer and is quite a special structure among all hollow materials," said Prof. WANG Dan from IPE.


The rapid development of HoMS started with the development of sequential templating approach in 2009, and years of study has found it possesses the advantage in effective surface exposure and optimized mass transport.


A hollow structure with multishells can provide more interfaces and thus further inhibit heat convection and transmission, thus making it more favorable for heat isolation.



The study shows that the thermally responsive polymer is a promising model for building thermal fields and reveals for the first time the mode of heat transfer through HoMS. This composite exhibits an unusual two-stage endothermic behavior whereby the direction of heat flow in the material matrix changes. The energy is accumulated in HoMS, which operates as a heat reservoir to regulate the thermal flow.


This work provides a new avenue for designing smart reactors for the green chemical industry, thus creating more opportunities for heat-related applications and increasing the potential for efficient energy use.


报道直达链接https://www.eurekalert.org/news-releases/941315

成果直达链接https://www.sciencedirect.com/science/article/pii/S2468025722000048?via%3Dihub


2022年01月17日:《高等学校化学研究》报道了课题组在钙钛矿太阳电池领域的研究成果


报道直达链接:https://mp.weixin.qq.com/s/sCIGSwA2mq2iIMe9Qauq5g

成果直达链接:https://link.springer.com/article/10.1007/s40242-022-1401-x

2021年11月22日:中国科学报以“研发新材料-实现高效光热水净化”为题报道了课题组近期在光热水净化领域的成果

成果直达链接https://onlinelibrary.wiley.com/doi/10.1002/adma.202107400


2021年11月18日:中国科学院官网以“利用非晶中空多壳层纳米材料实现高效光热水净化”为题报道了课题组近期在光热水净化领域的成果。

报道直达链接http://news.sciencenet.cn/htmlnews/2021/11/469245.shtm

成果直达链接https://onlinelibrary.wiley.com/doi/10.1002/adma.202107400


2021年11月18日:中国科学院过程工程所官网以“过程工程所利用非晶中空多壳层纳米材料实现高效光热水净化”为题报道了课题组近期在光热水净化领域的成果。


过程工程所利用非晶中空多壳层纳米材料实现高效光热水净化


报道直达链接:http://www.ipe.cas.cn/xwdt_/kyjz/202111/t20211118_6260217.html

成果直达链接:https://onlinelibrary.wiley.com/doi/10.1002/adma.202107400



2021年11月18日:科学网以“科学家用非晶中空多壳层材料实现高效光热水净化”为题报道了课题组近期在光热水净化领域的成果


科学家用非晶中空多壳层材料实现高效光热水净化

淡水资源紧缺是人类面临的重大挑战,科学家期待寻求一种无需耗电、没有地域限制的材料,以实现仅依靠太阳能的高效水净化。界面光热蒸水被视为一种绿色的获得饮用水的新途径。近期,中国科学院过程工程研究所研究员王丹团队在《先进材料》上发表论文,报道了一种具有中空多壳层结构(HoMSs)的非晶纳米复合物。将其作为界面光热蒸水材料,有效地提升了光热转换以及水输运效率,实现了高速、高稳定性、高环境耐受力的光热蒸水。据了解,光热蒸水的核心是光热界面材料,而半导体材料具有稳定性高,选材范围广等优势,具有巨大的应用潜力。


科学网报道直达链接http://news.sciencenet.cn/htmlnews/2021/11/469245.shtm

成果直达链接https://onlinelibrary.wiley.com/doi/10.1002/adma.202107400

2021年11月9日:美国Phys.org 以“New nanocomposite improves solar evaporation for water purification”为题报道了课题组近期在光热水净化领域的成果


Solar-thermal interfacial evaporation has been considered the most promising strategy for addressing this problem. However, developing an optimized material featuring both efficient solar-vapor conversion and good environmental tolerance still remains challenging.


Researchers from the Institute of Process Engineering (IPE) of the Chinese Academy of Sciences have developed an ultra-stable amorphous Ta2O5/C nanocomposite with a hollow multishelled structure (HoMS) for solar evaporation, which can improve the efficiency of water purification.


The study was published in Advanced Materials on Oct. 29.


"The precise atomic and composition control in the building block of HoMS realizes an indirect bandgap structure with abundant energy states around the Fermi level, which enhances nonradiative relaxation to facilitate photothermal conversion," said Prof. Wang Dan, the corresponding author of the study, "The unique hollow multishelled structure can efficiently enhance light absorption like a blackbody."


HoMS decreases the energy required for water evaporation. Simulation results show that HoMS establishes a thermal field gradient, thus providing the driving force for vapor evaporation.


"HoMS also benefits water transport," said Wang, "The confined cavities in HoMS promote liquid water diffusion owing to the capillary pumping effect, and the nanopores in HoMS induce water molecules to evaporate in the form of clusters, thus enabling evaporation with less enthalpy."


With highly efficient photoabsorption and photothermal conversion, a super-fast evaporation speed of 4.02 kg m-2h-1 has been achieved. The evaporation speed barely changed after 30 days, and with no salt accumulation, indicating a long-term stability.


Notably, the concentration of pseudovirus SC2-P could be decreased by six orders of magnitude after evaporation.


This amorphous Ta2O5/C composite is readily fabricated, carried, stored, and recycled. It can be applied to the purification of seawater, or to heavy metal- or bacteria-containing water, obtaining drinkable water that meets the standard of the World Health Organization.


The scientists from IPE are preparing a prototype of seawater desalination for the residents on isolated islands.


报道直达链接https://phys.org/news/2021-11-nanocomposite-solar-evaporation-purification.html

成果直达链接https://onlinelibrary.wiley.com/doi/10.1002/adma.202107400


2020年12月16日:祝贺赵亚松博士获得2020年度京博科技奖银奖!
 

2020年9月30日:祝贺“Small Structures Bring Big Things: Performance Control of Hollow Multishelled Structures”在Small Structures在线发表
 

2020年9月07日:祝贺“Sequential drug release via chemical diffusion and physical barriers enabled by hollow multishelled structures”在Nature Communications在线发表(Nature Communications, 2020, 11: 4450)
 

2020年8月17日:祝贺“Graphene-encapsulated nickel–copper bimetallic nanoparticle catalysts for electrochemical reduction of CO2 to CO”在Chem. Commun.在线发表
 

2020年8月15日:祝贺“Hollow Nanostructures for Surface/Interface Chemical Energy Storage Application”在Acta Chimica Sinica在线发表
 

2020年7月24日:祝贺“Sulfur-based redox chemistry for electrochemical energy storage”在Coordination Chemistry Reviews在线发表(Coordination Chemistry Reviews, 2020, 422, 213445)
 

2020年7月21日:祝贺“Steering Hollow Multishelled Structures in Photocatalysis: Optimizing Surface and Mass Transport”在Advanced Materials上在线发表(2020, DOI: 10.1002/adma.202002556)
 

2020年07月15日:祝贺:“Unique structural advances of graphdiyne for energy applications”在EnergyChem 在线发表(2020, DOI: j.enchem.2020.100041)
 

2020年06月26日:祝贺:研究成果“Dual‐Defects Adjusted Crystal Field Splitting of LaCo1‐xNixO3‐δ Hollow Multishelled Structures for Efficient Oxygen Evolution”在Angewandte Chemie International Edition在线发表(2020, DOI: 10.1002/anie.202007077)
 

2020年05月14日:祝贺:研究成果“Hollow Micro-/Nanostructure Reviving Lithium-sulfur Batteries”在Chemical Research in Chinese Universities发表(Chemical Research in Chinese Universities,2020, DOI: 10.1007/s40242-020-0115-2)
 

2020年04月30日:祝贺:研究成果“When Hollow Multi-Shelled Structures (HoMSs) Meet Metal-Organic Frameworks (MOFs)”在Chemical Science发表(Chemical Science,2020, DOI: 10.1039/D0SC01284J)
 

2020年04月08日:祝贺:研究成果“Efficient sequential harvesting of solar light by heterogeneous hollow shells with hierarchical pores”在National Science Review发表(2020, nwaa059, https://doi.org/10.1093/nsr/nwaa059.)
 

2020年02月11日:祝贺:研究成果“Hollow multishell structures exercise temporal–spatial ordering and dynamic smart behaviour”在Nature Review Chemistry发表(Nature Reviews Chemistry 2020, 4, 159-168.)
 

 
   
 
友情链接: Chem. Res. Chinese Universities CCS Chemistry Materials Chemistry Frontiers 中空多壳层纳微结构香山科学会议 第二届中空纳米材料国际研讨会 佛山市高明区(中国科学院)新材料产业研究院

中国科学院过程工程研究所 http://www.ipe.cas.cn/

地址:北京市海淀区中关村北二街1号 电话:86-10-62533616 传真:86-10-62533616 邮编:100190